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Abstract. This paper presents a new view of a key overlooked phenomenon when dealing 
with significantly eccentric rotors, namely the switch of the rotor’s axis of precession and 
consequent orientation in its bearings while passing through the critical speed region. 
This occurs in conjunction with torque effects unique to the case where a rotor’s principal 
mass axis and torque input axis are not coincident.  This condition also governs the ro-
tor’s phase shift process.  Around the critical speed, the inertia from the eccentric mass 
becomes sufficiently large as to alter the mode of rotation, bringing the rotor toward a 
“state of least action”, where the precessional orbit rapidly decreases, and the rotor begins 
to rotate about its principal mass axis. The most immediate benefit of recognizing this be-
havior is in the development of a new balancing method pertaining especially to flexible, 
bowed or eccentric rotors, designed for use in balancing facilities.  
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1 Introduction 

From practical experience through balancing hundreds of rotors with significant body 
eccentricities, and observing discrepancies in rotor behavior between the balancing 
facility (uncoupled) and in an installed rotor train, it is evident that highly eccentric 
rotors exhibit unique behavior and require unique treatment.  Among the observations 
are an apparent change in bearing position and rotor orientation when passing through 
the critical speed region, and notable shaft-centerline hysteresis between acceleration 
(with torque) and coasting/deceleration (without torque).  From these observations and 
supposition of rotor behavior, the author has developed a new balancing method to 
reliably resolve these cases, often requiring many fewer runs than standard approaches.  
This method has been proven in practice numerous times with the most “difficult” high-
ly flexible, highly eccentric rotors.  A detailed description of the method, named the 
Quasi-High Speed Balancing Method (or 2N+1 method), can be read in associated pa-
pers by the author. [1] 

Knowing that the method works, the next challenge is to explain why, and this paper 
is an attempt to better describe the unique physical behavior of eccentric or bowed ro-
tors when passing through the critical speed region.  The term “region” is added since 
the behavior being addressed begins at first induced deflection of the rotor and the initi-
ation of phase lag, and continues until the speed range where the phase lag has reached 
180 degrees.  Above this speed as well are some additional unique behaviors only seen 
on eccentric rotors.  The descriptions here are geared toward working engineers more 
so than academic interests, hence the explanations are entirely conceptual and visual, 
and are not intended to be rigorous.   



The standard, simplified approach of rotordynamics study that follows from an oscil-
lation-based model of vibration using spring, mass and damping parameters, in particu-
lar the Jeffcott model, cannot completely describe all true physical events that occur on 
real-life rotors while passing through a rotor/bearing system critical speed. A key over-
looked phenomenon when dealing with eccentric rotors is the switch of the rotor’s axis 
of precession and natural re-alignment in its bearings while passing through the critical 
speed region.  This occurs in conjunction with a subtle dissociation of the angular ve-
locity of rotor spin and rotor precession, as the relative angles of rotor deflection re-
sponse and reactive centrifugal force diverge (in what is typically considered phase 
lag), even independent of system damping.  Around the critical speed peak, the inertia 
from the eccentric mass, driven by input torque, becomes sufficiently large as to alter 
the mode of rotation, bringing the rotor toward a “state of least action”, where the pre-
cessional orbit rapidly decreases, and the rotor begins to self-align and alter its rotation 
from its geometric axis (the line connecting the journal centers) to a rotation/precession 
about its principal mass axis. 

In the classical view, after passing the critical speed region, dynamic mo-
tion/precession for all cases is assumed to remain centered about a single consistent 
non-rotating reference axis common through the speed range.  In our view, the initial 
geometric axis defines the rotation center and shaft orientation up to the critical speed 
peak, while the dynamic motion/precession above the critical peak is centered (and 
constrained) about the principal mass axis, which defines the new shaft centerline posi-
tion, which is determined by the rotor’s state of least action and the position it assumes 
in space in the bearings.   

Ultimately, it is the change in axis and bearing position and mode of precession from 
the effects of inertial forces that especially creates problems for standard balancing 
methods when applied to eccentric, flexible rotors.  The goal of balancing an eccentric 
rotor then is really to prevent the change in precession axis from noticeably occurring, 
which prevents the change in rotor orientation in the bearings.  This is achieved by 
bringing the mass axis coincident to the geometric axis from the start, and allowing the 
rotor to accelerate to speed without deflection or distortion.  In balancing eccentric 
rotors, it is crucial to create this condition to avoid unknowingly installing and con-
straining a rotor to run in a state other than the one in which it was balanced and aligned 
in the bearings. 

2 Features of an Eccentric Rotor 

The unique feature of a rotor with significant distributed eccentricity is that it en-
compasses quasi-constrained, forced non-centroidal rotation of the full rotor, with a 
torque input axis not coincident to the principal mass axis.  It can be considered “quasi-
constrained” in that the constraints/forces that force non-centroidal rotation are even-
tually overcome, but not until around the critical speed peak. (These aren’t purely phys-
ical contact constraints, but are combined with the effect of internal forces and mo-
ments.)  This is in contrast to the behavior created by typical local unbalance (like a 
chipped blade) on an otherwise concentric rotor, which produces a dynamic bending 
response at speed (or in resonance) within otherwise centroidal rotation at all speeds.  
Of course, such a dynamic or resonant response occurs as well in an eccentric rotor, in 
combination with or superimposed on the other effects.   



The phase shift for a significantly eccentric rotor encompasses the process through 
which the rotor passes as it switches from constrained non-centroidal rota-
tion/precession into centroidal rotation/precession while progressing through the critical 
speed region.  Note that there is no “perfectly concentric” rotor in real life, and in reali-
ty all rotors will have at least some small eccentricity, or separation between their geo-
metric axis and mean mass axis.  ISO 1940 acts as an effective distinguishing measure 
of eccentricity below which the separation in axes (and resulting switch in precession 
center) can be neglected.1  In rotors within ISO 1940 tolerances, the phase shift process 
still occurs, but the shift from a non-centroidal to centroidal condition happens without 
measurably affecting the rotor behavior, since the geometric and mass axes are nearly 
coincident from the start.   Likewise, if the centrifugal force from such a small eccen-
tricity remains unable to generate any noticeable deflection, the rotor will be observed 
as simply passing through the critical speed region without deflection response or pre-
cession orbit.2 

The combined rotor-bearing system can be thought of as comprising two intercon-
nected equilibriums, one being the non-rotating “static” equilibrium between the shaft 
and the bearing, and the other being the rotating “quasi-dynamic” equilibrium of the 
forces in the spinning rotor itself.  Each of these equilibriums affects the other, and 
instability in one can produce instability in the other. The non-rotating, “static” equili-
brium remains generally stable in position (only following the shaft centerline path), 
held by gravity load which is constant, and oil hydrodynamic forces which govern the 
rotor’s elevation in the bearings.  The rotating “dynamic” equilibrium remains refe-
renced to the geometric center of the shaft or its neutral centerline.  The dynamic forces 
from rotor rotation/precession are vectorially summed with these static forces, with the 
net summation then governing the position and orientation of the rotor in its bearings.  
In an eccentric rotor, the internal moments and forces dynamically generated by the 
eccentric mass will at some sufficient speed overcome the gravity load forces and alter 
and govern the rotor’s orientation in its static bearing equilibrium.3  

The generated “vibration” of a rotor is not a single simple motion, and is not truly 
modeled by a standard linear mass-spring-damper system, since the “vibration” of the 
rotor itself is really a translational motion in a precession orbit, without any real oscilla-
tion of the shaft (if the orbit is circular). That said, there still is a standard oscillatory 
component within the total rotor-bearing system. 4  Though the “vibrating” rotor is real-
ly precessing or translating, its bearing support (oil film primarily, but also the shell, 

                                                        
1  A major OEM developed similar standards in which runout/eccentricity limits are approx-

imately twice those in ISO 1940.  By the author’s experience, this is an appropriate and suita-
ble adjustment, as the ISO 1940 limits are more conservative than is necessary in practice 

2  In this case, an accurate determination of an orbit “high point” may be nearly impossible, and 
the phase angle between this and a shaft mark is not necessarily a reliable measurement 

3  This implies that the root of bearing instabilities, including subsynchronous whirl and oil 
whip, really arises from the condition of the rotor itself and not bearing design, though clearly 
with proper bearing type and design, the system can “withstand” and stabilize a much wider 
breadth of dynamic behavior from rotor imperfections. 

4  In the standard classical view, rotor “vibration” is considered acting in the line of the bearing 
force response, which then can be presented as a linear spring-mass-damper system, but it is 
erroneous to assume this visualization as the behavior of the shaft itself. 



housing and pedestal) can be viewed as a linear, non-rotating spring, with an effective 
line of action matching the attitude angle of the rotor in the bearing.  

Historically, phase lag is considered to originate entirely in system damping, pri-
marily via damping in the oil film, though it is still questionable if damping alone 
represents the full true physics of the phenomenon [2].  This correlates to viewing the 
rotor motion as a linear spring-mass-damper system, or the summation of two such 
linear systems 90 degrees apart, much in a manner in which displacement sensors in-
terpret rotor motion.  However, through a detailed look at rotor forces and behavior, an 
additional mechanism of phase lag is also seen, with its foundation in the conservation 
of angular momentum within rotor precessional motion.  This mechanism of phase lag 
is only relevant and only active during the transient acceleration of a rotor, and does not 
have an effect at steady state.   

3 Behavior and Forces of an Eccentric Rotor 

To explain the phase shift process and the switching of the axis of rotation, assume for 
instance a flexible, significantly eccentric rotor (constrained) in oil-film bearings that 
operates above its first critical, with a distributed eccentricity with a peak near the mid-
plane tapering to none at the endplanes.  To more easily recognize the interaction of the 
“static” and “dynamic” equilibriums, assume the “static”-related forces as located in a 
radial plane at the bearing(s), and the “dynamic”-related forces as located on a radial 
plane at the rotor midplane.   

The progression of the rotor’s behavior through its operating speed range can be 
conceptually divided here into four sections.  The first is from initial roll to the point 
where phase shift initiates, the second and third cover the critical speed region from 0 to 
90 degrees and from 90 to 180 degrees of phase shift respectively, and the fourth covers 
the speed region from just beyond the completed phase shift progression.   

3.1 The Effect of Torque 

A distinction can also be made regarding applied torque to an eccentric rotor, as com-
pared to an equivalent concentric rotor.  The total torque required to accelerate an ideal-
ly concentric rotor to a given speed considering its total inertia (ignoring other losses in 
this example) can be called “basic torque”.  Since an equivalent but eccentric rotor will 
produce a larger moment of inertia, both from its innate eccentric mass or runout, and 
from its larger resulting precession orbit, the extra torque required to accelerate this 
rotor to the same given speed can be called “supplemental torque”.  Conceptually 
speaking, the total torque applied can be divided into these two components, with the 
“supplemental torque” creating a “torque moment” around the mass axis, contributing 
to a number of effects unique to eccentric rotors.  Ultimately, all rotor behavior de-
scribed is created, directly or indirectly, through torque input.    
    Torque is applied to a rotor at its geometric axis at all speeds, either symmetrically 
about the blades of a turbine, or symmetrically about the coupling, like in a generator 
rotor, which is coupled symmetrically about its geometric axis.  Therefore, in an eccen-
tric rotor, there is a distance between the geometric axis through which the torque is 
applied, and the radial center of mass of any given “slice” of the rotor.  Since the prin-
cipal mass axis (or inertia) of the rotor body is at a position different than the axis of the 
input torque, there will be a “torque moment”, or reaction at the point of torque input 



from the inertia of the rotor body, present at each radial plane of the rotor where eccen-
tricity exists.  This “torque moment” is present through all rotor speeds and grows pro-
portionally as torque itself increases, both through increased speed and increased unit 
load. (This effect leads to the observed behavior named “torque whirl” by J. Vance). [3] 

A familiar example of this situation is drilling a hole vertically into one end of a long 
flat board sitting on a floor when suddenly the drill bit jams, though the drill motor is 
still applying torque.  This applied torque will immediately turn the entire board, with a 
pivot point at the location of the drill bit.  However, because the true center of mass of 
the board is somewhere near the center of its length, when the far end of the board be-
gins to rotate, the total inertia of the board will react against this applied force, as the 
board naturally will tend to turn about its mass center point, and the near end of the 
board will immediately jerk as it “pushes” tangentially against the drill.  However, if a 
strong constraint is holding the drill in place, then the board will maintain its turning 
around the torque input point, unless this constraint force is overcome.  If there is little 
or no constraint force, torque is still applied at its input point and still turns the board, 
while at the same time, the inertia of the board also turns the torque input point around 
the board’s center of mass.   

In a similar manner, the reaction to this moment from the applied rotor torque acting 
away from the center of mass would tend to naturally turn or flip the rotor over in the 
direction of rotation and attempts to move the torque input axis in an orbital path 
around the principal mass axis.  In other words, the rotor will want to naturally rotate 
about its center of mass, not its torque input axis, if these points are not coincident.   

3.2 Behavior, Forces and Moments through the Rotor Speed Progression 

From the point of initial roll, a flexible rotor will be in a state of gravity sag (even if 
pre-conditioned for a time on turning gear), where the rotor actually spins following the 
sag line, with a tension-compression cycle in the rotor material.  In this region, from 
zero-speed up to a few hundred rpm (or higher, depending on the flexibility and length-
to-diameter ratio of the rotor), the eccentric mass will produce a subtle oscillation or 
wobble in the rotor body, while maintaining a sagged state.  The only significant forces 
are the input torque to accelerate the rotor, gravity acting on the rotor and the corres-
ponding reaction forces in the bearings.  The “torque moment” acts at this stage, but 
simply “tumbles” around with the rotor, since without any induced rotor bending, it has 
no notable effect.      

At some eventual speed, the internal damping of the rotor material will prevent the 
necessary rapid switching of tension and compression along the sag line, and the rotor 
will “lock up” and begin to precess as a rigid, eccentric or bowed beam around a 
straight-line axis connecting the journal centers (the geometric axis).  This continues 
until the speed when entering the critical speed region where phase lag initiates.   
Because of the strong constraint of gravity holding the journals down in the bearings, 
the rotor cannot switch its rotation to its mass axis in this speed range, and so is forced 
to maintain non-centroidal rotation.  Because of this, and because the center of mass 
point itself is actually precessing now in some orbit around the geometric axis, a reac-
tive centrifugal force will arise from this eccentric mass.  This centrifugal force is ex-
erted by the eccentric mass on the bearings/constraints, with the shaft acting as a means 
of connection between this force and the constraints. This acts to “pull” and elastically 
bow the entire rotor body outward, maximized at the midplane.  Initially, the reactive 



centrifugal force and the resulting bending deflection are in line with each other.  This 
pulling acts against the internal spring of the rotor (which resists the bowing near the 
midplane of the length of rotor body), as the bearings constrain the ends from deflect-
ing.  The initiation of this section of rotor behavior corresponds with the beginning of 
the “critical speed region”, which also corresponds with the initiation of phase lag, with 
the response (or orbital) high point now lagging relative to this reactive centrifugal 
force that causes it. 
 

 

Fig. 1. Forces on an eccentric rotor at low speeds, prior to any induced deflection or phase lag. 

Once in this state, and from here forward, it is important to note that a “vibrating” 
rotor no longer actually oscillates only in the manner of typical linear mass-spring vi-
bration, but rather precesses in an orbit with the same side facing out (for synchronous 
motion), with no further tension-compression cycle of the rotor material (at least for 
circular orbits, though elliptical orbits will have some tension-compression).  This mo-
tion can be broken up into a spinning around the geometric axis through which torque is 
always centered, and a synchronous translational precession orbit.  Since the eccentric 
mass at this point remains still asymmetric to the precession of the rotor, it continues to 
generate an increasing reactive centrifugal force that “pulls” the eccentric rotor into an 
increasingly larger orbit.  At the same time, the “torque moment” described earlier is 
still present, and still attempts to flip the rotor to rotate about its center of mass, but is 
now also resisted by a moment generated by a reactive centrifugal force from the pre-
cessional motion (in the line O to C) acting about the geometric center of the rotor.   

To clarify the talk of moments, note that the utilization and description of moments 
here is not in the same manner as that used in engineering analysis, where multiple 
moments must be analyzed about the same common point to calculate a net single mo-
ment.  Rather, the moments are described in a manner easier to recognize and visualize, 
and represent separate moments acting about different points, and more so represent the 
rotor’s natural tendency of motion than any external applied forces.  In aggregate, these 
moments about different points do not create a net torque, but rather result in a net def-
lection, even though each individually would otherwise create a rotation. Combined, 
both this “torque moment” that would “flip” the rotor about its principal mass axis, and 
the “centrifugal force moment” act in tandem to maintain the forced non-centroidal 



rotation of the eccentric rotor, and in the process contribute to the increasing induced 
shaft deflection.   

Following the conservation of angular momentum, an increasing orbit will propor-
tionally slow its angular velocity.  Since torque is still applied symmetrically about the 
geometric center, the spin of the rotor continues at a rate that subtly disassociates from 
the orbital precession, which is slowed by comparison.  The amount of total deflection 
of the rotor determines the relative rate of decrease in angular velocity of the preces-
sional motion versus the spin.  Conceptually speaking, the “basic torque” is applied to 
generate the spin of the rotor, while the “supplemental torque” must be applied to ac-
count for the added radius of precession, including the “torque moment” resulting from 
the eccentric mass.   

Note that the true concept of conservation of angular momentum is applied in a 
closed system, and since there is a constant applied torque to the geometric axis, even at 
steady state, this isn’t truly a closed system.  Therefore, conservation of angular mo-
mentum doesn’t fully apply here in the universal sense, but more during a particular set 
of conditions.  The change in phase lag angle occurs only during active transient rotor 
acceleration and precession orbit growth.  Since the spin and precession are equivalent-
ly driven using a common drive torque, causing the spin directly and indirectly causing 
the orbit (via reactive centrifugal force), the torque input can be "normalized" and the 
two motions considered solely in a comparative manner as if it were a closed system. 
The same object with the same single input torque is in two rotational motions, with the 
only difference being their transient instantaneously diverging radius of rotation, during 
which the precession orbit comparatively lags in angular velocity relative to the spin. 

 

Fig. 2. Forces on an eccentric rotor in the critical speed region, before the peak response. 

With a phase lag still less than 90 degrees, the rotor is effectively in two simultane-
ous, synchronous motions, the spin of the rotor around its geometric axis, B, and the 
precession of the rotor about its imaginary shaft centerline or orbital center O.  The 
centrifugal force created by eccentric mass that is acting on and bending the rotor in-
itiates from and continues from the spin of the rotor, pointing from the geometric cen-
ter, B, toward the center of mass, C, while the resulting internal deflection/bowing, d, 
resisted by the “spring” of the rotor Fk follows the precessional orbit (which reacts 



against the bearing constraints), with a high spot pointing outward from the precession 
center, O, through the geometric center, B.  Additionally, the “torque moment” Mtq 
continues to tend to flip the rotor about its principal mass axis at C in the direction of 
rotation, while being countered by the “centrifugal force moment” Mcf acting through 
the center of mass, C, from the precessional motion, against the spin at B.  

When the phase lag angle reaches 90 degrees, the reactive centrifugal force (from B 
to C) and the resulting deflection (from O to B) become orthogonal, and the centrifugal 
force no longer has any effective component remaining to maintain the rotor deflection.  
The remainder of the phase shift from 90 to 180 degrees, on the downslope of the criti-
cal speed response peak, occurs under a different mechanism than the way up.   The 
potential energy that was stored in the deflected spring of the rotor is rapidly released 
into kinetic energy as the orbital radius from induced bending rapidly drops, and the 
rotor accelerates.  Through the drop in rotor deflection and loss of effect from reactive 
centrifugal force, the remaining force constraint that had been preventing the rotor from 
rotating around its principal mass axis disappears, and the “torque moment” can finally 
flip the rotor to precess about its principal mass axis.  This process shifts the phase an-
gle between the direction of the heavy spot and the orbital high point the rest of the way 
to 180 degrees, and the rotor self-aligns in its bearings to the orientation of its principal 
mass-axis.  At this  phase  lag angle with the “spin” 180 degrees ahead of the orbital 
peak, the mass center, C, becomes positioned between the geometric center, B, and the 
center of the precession orbit, O.  In certain distributions or ratios of rotor eccentricity, 
the mass center and orbital center become nearly coincident.  This instantaneous “least 
action” state corresponds to the sometimes-observed dip seen in measured displacement 
amplitudes either just before or after the critical speed peak.5    

Though this previous description of phase lag only focuses on the rotor precession 
and torque effects on the rotor, there are also effects arising from oil film damping and 
internal hysteretic damping.  The damping effects are more secondary however, and do 
not drive or govern the fundamental critical speed behavior, but rather affect certain 
response parameters such as the extent of the velocity range through which critical 
speed behavior is seen.  Therefore, with all combined effects there is some variability in 
the observed timing of phase shift, along with corresponding amplitudes.   

The final section of rotor behavior appears upon reaching the state of least action 
where the eccentric rotor is now precessing around its center of mass.  Because there is 
still torque being applied to the geometric axis, the same “torque moment” from before 
continues to turn the geometric axis about the mass axis, still synchronously and with-
out a constraint to its motion.  At the same time, there is still a reactive centrifugal force 
from the spin of the rotor, pointing from the geometric axis, B, toward the mass center, 
C (effectively toward the center of precession, O), with the response to this force now 
180 degrees behind, counteracting it.  The combined result is a precession of the mass 
center, C, with an orbit radius equal in size to the amount of eccentricity, e.  Simulta-
neously, the motion also incorporates the synchronous spinning of the geometric center, 

                                                        
5  This “amplitude dip” correlates to the “torque moment”-driven flip of the rotor, where the 

rotor briefly rotates about its principal mass axis in a “least action” state.  For equivalent un-
balance (oz-in), the dip’s occurrence is dependent on input torque combined with the ratio of 
eccentricity (distance) to eccentric mass (weight).  This dip occurs at pre-critical speed when 
eccentric mass is large but its distance from the geometric axis is small, and at post-critical 
speed when the total eccentric mass is smaller but at a larger distance. [4] 



B, around the mass center, C, which itself is seen as the “runout high point” in the 
amount of the eccentricity.  This maintains the geometric center, B, in a constant out-
side position relative to the position of the mass center to the orbital center.  The total 
peak amplitude therefore seen by a displacement sensor is equal to twice the eccentrici-
ty (2*e) while in this state of least action above the critical speed.  This is in contrast to 
the measured peak amplitude at low speeds (essentially the rotor runout) being equal to 
the eccentricity (1*e).   This displacement amplitude behavior can be verified by view-
ing real-life Bode plots for significantly eccentric rotors. 

Once fully beyond the critical speed region, as the eccentric rotor is further accele-
rated, the ends are often driven into increasingly larger orbits, often out of phase and 
without bending deflection and without any notable phase shift.  This is seen in Bode 
plots as an up-sloping amplitude line above the first critical, but with a steady phase 
angle, with the response often out of phase at each end.   

The fact there is an increasing orbit, but without a notable phase shift, comes from 
the interplay between another “torque moment” and the tendency of the rotor now to 
remain in precession about its principal mass axis.  If there is still residual eccentricity 
on the rotor it is in all likelihood biased toward one side, away from the axial center of 
gravity of the rotor.  With the axial center of gravity now located on the current rota-
tional axis, this point acts as a pivot and a constraint to the rotor motion.  The axial 
center of the eccentric mass distribution generates an axial moment about the rotor’s 
overall axial center of gravity, driving a rocking motion of the rotor.   

With continued added torque and rotor acceleration, a reactive centrifugal force will 
similarly be exerted radially by the residual eccentric mass on the bearings, and in the 
same manner as before, the shaft will act as a connection between this force and the 
bearings.  Vibration displacements will increase proportionally to the square of speed.  
The rate of amplitude increase is greater if the rotor is flexible, or reaction forces in 
bearings will increase more if the rotor is more rigid.  Both displacements and forces 
will be additionally amplified at the beginning of the next critical speed region.   

Recall as well that the torque is still being applied around the geometric axis, even 
though the rotor is now precessing about its mass axis, and therefore, the torque mo-
ment described earlier is still present.  The “centrifugal force moment” described earlier 
is also still present, but with a comparatively smaller effect due to the still small bend-
ing deflection radius at this state.  Because the rotor is now already precessing about its 
mass axis, and because the centrifugal force is small, this “torque moment” is not re-
sisted as in the overall state before the first critical peak, and so synchronously “tum-
bles” the rotor about its mass axis.  In this state, the “tumbling” and the spin of the rotor 
(from input torque) remain synchronously driven and do not yet generate a new phase 
lag.  This condition represents the natural, “least action” state of an eccentric rotor for 
the situation where torque is applied outside of the mass axis while precession occurs 
around the mass axis.   

At some point, a speed is reached where the still-growing reactive centrifugal force 
is large enough to again elastically bend each half of the rotor individually.  This now-
larger centrifugal force, having induced some bending deflection, creates a new “mo-
ment” that again begins to resist the “torque moment”.  These two forces (or “mo-
ments”) in combination cause a net outward “pull” as before, now on each half of the 
rotor separately.   This creates the second critical speed region, with a new phase lag 
progression on each half of the rotor, and a second peak in amplitude.  This second-
critical progression progresses in each half of the rotor in a manner self-similar to the 



whole rotor at lower speeds while it passed through the first critical speed region.  In a 
Bode plot, amplitude rise and fall within the second critical region can sometimes be 
observed superimposed on top of the steady up-sloping amplitude line generated from 
the rigid rocking of the rotor described in the previous paragraphs, as both behaviors 
can occur simultaneously.   

 

 

Fig. 3.  Above the first critical, with precession about mass axis, and re-alignment in bearings 

One additional observed behavior that is connected to the preceding descriptions is 
the hysteresis sometimes observed in the shaft centerline between the path up while 
accelerating an eccentric or bowed rotor and the path down while decelerating.  The 
path down is followed without any torque input for the entire speed range back to 
standstill, and without torque (and the “torque moment”) acting as a constraint forcing 
non-centroidal rotation on the way down, the rotor will precess about its mean mass 
axis through the entire deceleration.  Since this is a different precession condition than 
during acceleration, the relative position of the rotor ends as seen at each bearing will 
be changed, with the hysteresis size being proportional to the amount of eccentricity.  
This creates the hysteresis loop sometimes seen between the accelerating and decelerat-
ing shaft centerline path.   

4 Conclusion and Reconnection to Rotor Balancing 

The long preceding description of the switch in rotor precession axis through the phase 
shift presents the unique behavior of flexible rotors with large distributed eccentricity, 
and provides a rationale for the requirement to balance such  rotors in 2N+ 1 balancing 
planes.  From the tendency of eccentric rotors to self-align in their bearings to their 
principal mass axis above the first critical, the goal of balancing should be to bring the 
principal mass axis coincident to the rotor’s geometric axis, without producing rotor 



distortion or internal moments, thereby preventing these phenomena from occurring.  
By following the Quasi-High Speed Balancing Method using 2N+1 balancing planes, 
any eccentric rotor can be brought to a smooth running condition when installed in a 
properly aligned rotor train.   
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